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Abstract

Despite its high volatility, Bitcoin is alleged to offer diversification benefits through its relatively

low correlation with stock markets. However, Bitcoin differs from traditional safe-haven assets;

its price is highly sensitive to time-varying correlations and diversification benefits. We find

that a decrease (an increase) in correlation between Bitcoin and S&P500 index strongly predicts

higher (lower) Bitcoin returns the next day. Following the mean-variance framework, we develop

a stylized model of Bitcoin prices utilizing extreme disagreement among Bitcoin investors. When

the model is calibrated to Bitcoin’s predictability results, it simultaneously explains the lack of

predictability in gold and long-term treasuries.
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1 Introduction

Safe-haven assets receive special attention at the age of uncertainty. Risk-averse investors often

rely on a safe-haven asset to diversify their portfolios in hope of hedging recession or inflation risk.

Recently, a major cryptocurrency Bitcoin is promoted as a new safe-haven asset by ‘digital gold’

narrative (Shiller 2020). Consistent with the narrative, numerous studies find that Bitcoin offers a

diversification benefit which is possibly time-varying.1 Traditional investors, such as pension funds

and sovereign wealth funds, include Bitcoin in their portfolios for potential diversification benefits.2

However, we find that Bitcoin price behaves differently from other traditional safe-haven assets;

Bitcoin price is highly sensitive to time-varying correlations and diversification benefits. Our esti-

mation shows that if Bitcoin’s time-varying correlation with S&P500 index returns drops (rises) by

0.1, then daily Bitcoin returns on the next day are 1.5% higher (lower) than otherwise would have

been. This return predictability is highly significant (t-statistics -3.68) in Bitcoin, but traditional

safe-haven assets such as gold and long-term treasuries show no predictability, to the contrary.

The sign of Bitcoin’s return predictability looks puzzling at first glance because lower correlation

generally implies larger diversification benefits and lower risk premium to compensate. We propose

a simple return-predictability mechanism based on trading practices. Consider a passive fund

manager who holds a portfolio which is a mix of the stock market portfolio and a safe-haven

asset. She revises her estimate on the correlation between them at market close and updates

optimal portfolio weights on both assets. Then she requests in-house traders or external trading

firms to rebalance her portfolio accordingly. However, traders in practice rarely execute orders

immediately. Instead, they split and delay orders during the next trading session while hoping for

better execution prices without revealing the fund manager’s intentions, as shown in the literature

theoretically (Kyle 1985, Admati and Pfleiderer 1989) and empirically (Barclay and Warner 1993,

Chakravarty 2001).3 Therefore, an increase (decrease) in correlation today at market close can

1For example, see Briere, Oosterlinck, and Szafarz (2015), Dyhrberg (2016a), Dyhrberg (2016b), Bouri, Molnár,
Azzi, Roubaud, and Hagfors (2017), Corbet, Meegan, Larkin, Lucey, and Yarovaya (2018), Guesmi, Saadi, Abid, and
Ftiti (2019), Shahzad, Bouri, Roubaud, Kristoufek, and Lucey (2019), Akhtaruzzaman, Sensoy, and Corbet (2020)
Bouri, Shahzad, Roubaud, Kristoufek, and Lucey (2020), Shahzad, Bouri, Rehman, and Roubaud (2022), Bakry,
Rashid, Al-Mohamad, and El-Kanj (2021), and Huang, Duan, and Mishra (2021), among many others.

2See news articles at bit.ly/3qxaVmt, bloom.bg/3gl5zG2, bloom.bg/3qCcoIc, on.wsj.com/3htc369, and
https://on.wsj.com/37clZgh.

3See an article related to this Bitcoin trading behavior at https://yhoo.it/3i9ctPO. Also, see empirical evidence
on order imbalance (Chan and Fong 2000, Barber, Odean, and Zhu 2008), and institutional investors (Sias and Starks
1997, Keim and Madhavan 1995).
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suppress (boost) the hedging or diversification demands for Bitcoin and thus equilibrium Bitcoin

prices on the next day.

Our proposed mechanism can qualitatively explain Bitcoin’s return predictability but still leaves

some questions unanswered.4 Why does only Bitcoin display return predictability while other

safe-haven assets such as gold and long-term treasuries fail to do so? Is the degree of Bitcoin’s

predictability quantitatively plausible?

Formalizing the return-predictability mechanism, we develop a stylized model of a safe-haven as-

set market with active and passive investors under a classical mean-variance framework (Markowitz

1952), without other market frictions such as liquidity or transaction costs. Active investors are

overall rational, but they ignore changes in correlation and stick to their own subjective belief (or

price target) on a safe-haven asset. By contrast, passive investors avoid price speculation and min-

imize the total variance of their portfolio. We calibrate the model so that it can replicate Bitcoin’s

predictability result with empirically plausible parameters, using estimates from the Dynamic Con-

ditional Correlation (DCC) Generalized Autoregressive Conditional Heteroskedasticity (GARCH).

Then the calibrated model simultaneously explains the lack of predictability in traditional safe-

haven assets such as gold and long-term treasuries.

The key difference between Bitcoin and other safe-haven assets lies in their volatilities. Bitcoin

is five times more volatile than S&P500 index in recent years whereas gold is less volatile than

S&P500 index. If Bitcoin and gold markets have the same proportion of active investors, then a

classical mean-variance framework implies that active investors in Bitcoin markets require a higher

risk premium to compensate high volatility than those in gold markets do. That is, the active

investors in Bitcoin markets have higher price targets (or expected-return).5

We notice that active investors with high price targets should have inelastic asset demands.

With high subjective expected returns, the same change in asset prices makes only small percentage

changes in subjective expected returns and asset demands. For example, suppose active investors’

subjective daily expected return on Bitcoin is 4% since they set their expected Bitcoin price (or price

target) on the next day at 4% higher than the current price. If Bitcoin price suddenly drops by 0.2%

4See Section 3.5 for alternative explanations.
5In fact, this is exactly what is happening in the Bitcoin markets. Unlike traditional safe-haven assets like gold and

long-term treasuries, Bitcoin enthusiasts are well known for their extreme optimism, possibly fueled by its exponential
price growth in the recent period. The active Bitcoin investors’ high price targets imply a strong disagreement on
fair asset values among all investors, which explains why Bitcoin has high volatility in the first place.
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purely because of passive investors’ rebalancing orders, then the new subjective expected return of

active investors is about 4.2% (≈ 4% + 0.2%) which is only 5 percent (4.2/4.0 − 1 = 0.05) higher

than the previous number 4%. However, if active investors’ Bitcoin price target (or expected price)

is only 0.1% higher than the current price (equivalently, their subjective expected return of Bitcoin

is only 0.1% at the beginning), the expected return would be almost tripled to 0.3% (≈ 0.1%+0.2%)

by the sudden 0.2% price drop. Therefore, active Bitcoin investors with high price targets have less

elastic demands than active gold investors.

If active investors’ demand is inelastic, asset price should move more to clear the market when

passive investors want to rebalance their Bitcoin position in response to changes in correlation and

diversification benefits. In this way, a highly volatile safe-haven asset can show strong return pre-

dictability whereas relatively less volatile safe-haven assets should show practically no predictability.

Therefore, Bitcoin offers a unique laboratory to test the return-predictability mechanism. Bitcoin is

an uncommon asset that attracts both types of investors: active investors with extreme optimism—

possibly due to excitement for blockchain technology—and passive investors with strong hedging

or diversification demand at the age of uncertainty—possibly due to success of digital gold narra-

tive that diverts attention from slow and expensive Bitcoin transactions (Hinzen, John, and Saleh

2022).6

From various angles, we thoroughly investigate Bitcoin’s return predictability evidence and find

the following. First, the observed return predictability is economically meaningful. Our sample

includes 765 observations, R2 is above 1%, and Bitcoin’s daily return volatility is 5%, all of which

are comparable to the market return predictability results in the literature with 60 years of monthly

data. This return predictability is observable to econometricians but ignorable to traders who face

huge intra-day volatilities. Second, other variables can hardly explain the return predictability

evidence. The magnitude and the statistical significance of the coefficient estimate remain stable

even if other existing predictors or control variables are used in multivariate regressions and machine

learning algorithms. Third, out-of-sample R2 by a robust linear model is 2.3% at daily frequency,

which eliminates concern of look-ahead bias and instable coefficients. Lastly, a placebo test and

extensive robustness tests validate the return predictability evidence.

To the best of our knowledge, this paper is the first attempt to link time-varying diversification

6See Hardle, Harvey, and Ruele (2020) for an extensive literature review.
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benefits with return predictability in old and new safe-haven assets, both theoretically and empir-

ically. Nevertheless, various underlying assumptions of our analysis are closely related to prior

studies. First, we assume that different types of investors co-exist in Bitcoin markets. Consistent

with our assumption, Ferko, Moin, Onur, and Penick (2021) document that a significant fraction of

investors in Bitcoin futures markets also have net long positions in others such as the stock market

index futures whereas some investors are highly concentrated in Bitcoin. Second, we use time-

varying correlation to track the time-varying diversification benefits as a return predictor. Several

researches also estimate time-varying correlations between different asset classes and suggest an

effective portfolio strategy to investors in practice (Gao and Nardari 2018).7

However, this paper differs from other studies on cryptocurrency markets at least in two aspects.

First, we highlight a rational aspect of Bitcoin markets, in particular, asset pricing implications of

time-varying hedging or diversification benefits for passive institutional investors. Second, we study

Bitcoin’s return predictability through its joint dynamics with stock markets. By contrast, many

existing studies focus on cryptocurrency markets alone or investigate their irrational side driven by

price manipulation or behavioral mistakes by retail investors.8

The paper proceeds as follows. Section 2 presents evidence on time-varying correlation and

return predictability. Section 3 develops a stylized model of a safe-haven asset market. Section 4

validates Bitcoin’s return predictability from various angles. Section 5 discusses remaining concerns

and performs extra tests. Section 6 concludes.

2 Motivation: Return Predictability of Safe-Haven Assets

Suppose the correlation between the market portfolio and a safe-haven asset is time-varying. Then

the hedging or diversifying benefits of the safe-haven asset must be also time-varying. Therefore, the

asset demands and prices of the safe-haven asset should fluctuate accordingly. We first examine this

hypothesis with three safe-haven assets: gold, long-term treasuries, and Bitcoin, so-called digital

gold. Finally, we find strong return predictability of Bitcoin, due to its time-varying correlation

with the stock market portfolio.

7See Bianchi, Guidolin, and Pedio (2020) for other time-varying aspects of Bitcoin.
8See Cheng, De Franco, Jiang, and Lin (2019), Makarov and Schoar (2020), Li, Shin, and Wang (2021), and

Griffin and Shams (2020) among many others.
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2.1 Time-Varying Correlations and Diversification Benefits

To estimate time-varying correlation between a safe-haven asset and the stock markets, we choose

a parsimonious time-series model: DCC(1,1)-GARCH(1,1), Dynamic Conditional Correlation –

Generalized Autoregressive Conditional Heteroskedasticity, by Engle (2002).9 Let a 2 × 1 vector

rt = [rb,t rm,t]
> denote the daily log returns of a safe-haven asset and S&P500 index at time t.

rt = µ+ et where et ∼ N(0,DtRtDt),

where Dt = diag{σb,t, σm,t} is a diagonal matrix of the time-varying conditional volatilities, mod-

eled by univariate GARCH(1,1):

σ2i,t = ωi + αie
2
i,t−1 + βiσ

2
i,t−1 for i = b,m,

while Rt is the conditional correlation matrix of et, modeled by DCC(1,1):

Rt = Q∗−1t QtQ
∗−1
t where Qt = (1− a− b)Q+ aεt−1ε

>
t−1 + bQt−1, (1)

where Q is the unconditional covariance matrix of εt = D−1t et ∼ N(0,Rt) and Q∗t is a diagonal

matrix whose diagonal elements are the square roots of the diagonal elements of Qt.
10 The model

reduces to the Constant Conditional Correlation (CCC) GARCH model of Bollerslev (1990) if Rt

is time-invariant Rt = R and so Qt = Q, which will produce a ≈ 0 in estimation. To the contrary,

correlation is time-varying if parameter a statistically differs from zero.

We apply DCC(1,1)-GARCH(1,1) models to three safe-haven assets: gold, long-term treasuries,

and Bitcoin. We use futures prices for gold, spot prices for Bitcoin, and Vanguard Long-Term

Treasury Index Fund ETF Shares (VGLT) prices for long-term treasuries.11 The data ranges from

Dec 18, 2017 to Dec 31, 2020, which results in 765 daily observations. We choose the starting

date as Dec 18, 2017 because it is when Bitcoin futures markets begin at Chicago Mercantile

9Our results are robust to different model choices. See Section A.3.1 in the online appendix for alternative
multivariate GARCH models with conditional correlations.

10To ensure model validity, parameters a and b satisfy the restrictions a ≥ 0, b ≥ 0, a+ b < 1, and Qt should be
positive definite.

11VGLT primarily invests in U.S. treasury bonds and maintains a dollar-weighted average maturity of 10 to 25
years. We download Bitcoin and S&P500 daily closing price data from coinmarketcap.com while gold futures and
VGLT price data from investing.com. See Section 4.1 for our data collection procedures.
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Exchange (CME), followed by Chicago Board Options Exchange (CBOE).12 Since then the nature

of uncertainty in Bitcoin changes from idiosyncratic to systematic (Pástor and Veronesi 2009), and

Bitcoin trading and price dynamics change significantly, as documented in the literature.13 Most

importantly, investors begin to recognize Bitcoin as a safe-haven because of its new narrative digital

gold. As a result, more investors participate in Bitcoin markets for hedging and diviersification

rather than pure speculations (Ferko, Moin, Onur, and Penick 2021).14

The estimated correlations of all three safe-haven assets with S&P500 are all highly time-

varying, as shown in Figure 1. We confirm that evidence on time-varying correlation is statistically

significant for all three safe-haven assets; see t-statistics of parameter a of DCC(1,1)-GARCH(1,1)

in Table 1. Therefore, the hedging or diversification benefits of those safe-haven assets are also

time-varying; so are asset demands.

Despite extreme volatilities and relatively high correlation levels, Bitcoin offers a daily di-

versification benefit for the sample period studied in this paper. Assuming that the DCC(1,1)-

GARCH(1,1) estimates are true values, we compute the daily ex-ante variance of the global min-

imum variance portfolio that includes only S&P500 and Bitcoin. The 83.5% of 765 days in the

sample period show reduced ex-ante variance with a positive position in Bitcoin.

2.2 Return Predictability

Table 2 shows how changes in correlation today predict the next day’s safe-haven asset returns in

a predictive regression:

rb,t+1 = a0 + a1∆ρt + εt+1, (2)

where ∆ρt is a lagged correlation change between a safe-haven asset and S&P500 index. In case

of Bitcoin, the estimated slope coefficient a1 is -0.153, and its Newey-West adjusted t-statistic is

-3.7 with R2 of 1.05%. That is, if correlation drops (rises) by 0.1 today, we can expect about 1.5%

higher (lower) Bitcoin returns the next day. This predictability is robust to various specifications:

excluding samples after the COVID-19 outbreak, using robust linear models such as LAD (Least

12In late 2017, Bitcoin experiences an iconic event; Bitcoin futures markets begin at Chicago Board Options
Exchange (CBOE) on December 11 and at Chicago Mercantile Exchange (CME) on December 18, 2017. CBOE
delisted Bitcoin futures in 2019 temporarily but CME never did.

13See, for example, Augustin, Rubtsov, and Shin 2020, Hardle, Harvey, and Ruele 2020, and Kim, Lee, and Kang
2020

14We find that the correlation between Bitcoin and S&P500 is constant before Dec 18, 2017 anyway.
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Absolute Deviation) and Rank regressions, transforming the data by Inverse Normal Transforma-

tion, or trimming the data. In all alternative specifications, the predictability evidence is stable or

even stronger than the baseline case.

We notice that these results are highly reliable and economically meaningful; we have 765

observations, R2 is above 1%, and Bitcoin’s daily return volatility is about 5%, all of which are

comparable to the market return predictability results in the literature with 60 years of monthly

data.15 We provide a thorough empirical analysis (Section 4), a placebo test (Section 5.2), and

extensive robustness tests (Section 5.3) on this return-predictability evidence.

However, the sign of Bitcoin’s return predictability seems puzzling at first glance because lower

correlation generally implies larger diversification benefits and lower risk premium to compensate

risk. Furthermore, Table 2 shows that changes in correlation fail to predict the next-day returns

of traditional safe-haven assets such as gold and long-term treasuries. We argue that Bitcoin’s

predictability is not just a lucky outcome even after adjusting multiple testing problem; Bitcoin

fundamentally differs from traditional safe-haven assets. The model in the next section explains

these puzzling empirical patterns.

3 Safe-Haven Asset Returns: A Static Model

Inspired by a well-known asset allocaiton practice, we develop a stylized but parsimonious partial

equilibrium model. The model aims to quantify the effect of time-varying correlation on subse-

quent returns, holding other things (e.g., exotic features of Bitcoin) constant, rather than perform

complete valuation of a safe-haven asset.16

3.1 Return-Predictability Mechanism: A Summary

Prior to a formal model, we present a non-technical summary of return-predictability mechanism:

an increase (decrease) in correlations today at market close suppresses (boosts) the hedging or

15Bitcoin’s high volatility can be also interpreted as a subordinated process: Bitcoin behaves as if the clock for
Bitcoin runs fast. This interpretation also supports the use of daily returns data for a short period.

16Many non-standard components are used in the recent Bitcoin pricing literature, e.g., gradual adoption, Bitcoin
mining cost, payment transaction volume, size of network, halving, and sentiments. See Athey, Parashkevov, Sarukkai,
and Xia (2016), Biais, Bisiere, Bouvard, Casamatta, and Menkveld (2020), and Cong, Li, and Wang (2021) among
many others. Ignoring these exotic forces in Bitcoin valuation is unrealistic, yet unifying all of them is not only
challenging but creating more confusion.
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diverfication demands for Bitcoin and Bitcoin prices on the next day.

At day t − 1

At day t

Increase in
correlation

Decrease in
hedging demand

Delayed sell
order execution

Delayed price drop

The above flowchart visualizes the mechanism behind the predictability which is observable to

econometricians but ignorable to traders who face huge intra-day volatilities. This one-day time

lag in rebalancing is negligible at monthly frequency; therefore, conventional empirical tests of

canonical asset pricing models easily overlook this short-term predictability.

This mechanism is closely linked to asset allocation in practice. Suppose a passive fund manager

holds a portfolio which is a mix of the benchmark portfolio and a safe-haven asset. She revises her

estimate on the correlation between them at market close and updates optimal portfolio weights on

both assets. Then she requests in-house traders or external trading firms to rebalance her portfolio

accordingly. The traders in practice rarely execute orders immediately. Instead, they split and delay

orders during the next trading session while hoping for better execution prices without revealing

the fund manager’s intentions (Kyle 1985, Admati and Pfleiderer 1989).17 At an aggregate level,

such delayed rebalancing demands are highly correlated across passive investors who observe the

same public information such as historical prices. Therefore, an increase (decrease) in correlations

today at market close suppresses (boosts) the hedging or diverfication demands for Bitcoin and

Bitcoin prices on the next day.

The delayed-trading practice is supported by rich empirical evidence. Stealth trading is preva-

lent in the markets (Barclay and Warner 1993, Chakravarty 2001), order imbalance predicts daily

returns (Chan and Fong 2000, Barber, Odean, and Zhu 2008), and institutional investors’ behav-

iors create return autocorrelation at daily level (Sias and Starks 1997, Keim and Madhavan 1995).

However, our model and empirical finding differ from these studies which find transitory price im-

pacts by heterogeneous traders. By contrast, the price impact in our model and data is practically

17See an article related to this Bitcoin trading behavior at https://yhoo.it/3i9ctPO.
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permanent because the correlation dynamics is highly persistent (close to a random walk); the

parameter b in DCC-GARCH model is estimated as 0.948 in Table 1 which roughly measures the

serial-correlation of time-varying correlation.

We emphasize that this mechanism does not necessarily require investors’ daily rebalancing. For

example, they maybe rebalance once a month but on different days so that there are some investors

who rebalance their portfolios on any given day.18 Furthermore, even if this delayed rebalancing

occurs only once in a few days, return predictability can appear as an averaged daily effect in

empirical tests with a dataset of multiple days. We formalize this return-predictability mechanism

in a partial equilibrium pricing model in the following sections.

3.2 Asset Demands from Two Types of Investors

The mechanism in the previous section can qualitatively explain Bitcoin’s return predictability

but still leaves some questions unanswered. Why does only Bitcoin display return predictability,

but neither gold not long-term treasuries? Is Bitcoin’s predictability quantitatively plausible? To

answer these questions, we develop a model of a safe-haven asset as follows.

Consider two types of investors in the market of a safe-haven asset: active and passive in-

vestors.19 Then we model their asset demands in the same mean-variance framework but with

different input parameters for portfolio optimization. They mix a safe-haven asset with their ex-

isting well-diversified risky portfolio such as stock market portfolios, say, an S&P500 index fund,

to maximize Sharpe ratio.20 We let µb,t and µm,t denote the conditional subjective risk premia of

a safe-haven asset and the stock market, respectively. Similarly, σb and σm denote the volatilities

of the two assets, respectively. Then the investors’ ex-ante optimal weight on a safe-haven asset in

the new tangency portfolio is given by

wb =
σ2mµb,t − ρtσbσmµm,t

σ2mµb,t − ρtσbσmµm,t + σ2bµm,t − ρtσbσmµb,t
=

µ∗t − ρtσ∗

(µ∗t − ρtσ∗) + (σ∗ − ρtµ∗t )σ∗
, (3)

where ρt is the correlation coefficient between a safe-haven asset and the stock market, and where

18This alternative assumption only results in a different interpretation on the model: now the model is about the
investors who participate in trading on a given day rather than all investors.

19The distinction between two types of investors are not physical. One investor can have both active and passive
aspects, and then we can interpret her asset demand as a sum of the demands from two different types of investors.

20Even if investors in the real world do not maximize Sharpe ratio, we can still rely on the mean-variance framework
to explain their investment decisions simply by adjusting input parameters for portfolio optimization accordingly.
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µ∗t = µb,t/µm,t and σ∗ = σb/σm are the safe-haven asset’s risk premium ratio and volatility ratio

relative to the stock market, respectively.21

Both types of investors agree on σ∗ but agree to disagree on µ∗t and ρt. In particular, the

passive investor believes µ∗t = 1. In other words, the passive investor is so defensive that her

optimal portfolio is the global minimum variance portfolio which is implied by setting µ∗t = 1.22

The passive investor believes that predicting asset prices is a difficult task and only adds unnecessary

noises to the portfolio optimization. Therefore, she would set µ∗t = 1 regardless of current price

levels. Instead, she focuses on tracking time-varying correlation ρt rather than the risk premium.

By contrast, the active investor cares less about tracking time-varying hedging or diversification

benefits. She is generally more optimistic and seeks potential price appreciations. Therefore, she

directs all her limited attention and resources to learn about risk premium µ∗t and future asset

prices. Both types of investors stick to their own belief and optimization rule regardless of the

other investor’s belief and behavior.

Therefore, the optimal weights on a safe-haven asset in both types of investors’ portfolios are

determined by Equation (3) with their own input parameter values, respectively. For the passive

investor, the optimal weight on a safe-haven asset is w
(p)
b,t ≡ wb(µ

∗ = 1, σ∗, ρt−1) where ρt−1 is

the correlation estimate from the previous day at market close. This timing difference is due to

the passive investors’ delayed order execution from the mechanism in Section 3.1. For the active

investor, the optimal weight on a safe-haven asset is w
(a)
b,t ≡ wb(µ

∗
t , σ
∗, ρ) where ρ is the active

investor’s conservative correlation estimate. Note asset prices at day t does not affect passive

investors’ asset demand, in terms of portfolio weight w
(p)
b,t , which is already set on the previous

day at market close. By contrast, a safe-haven asset price Pb,t at day t is directly linked to active

investors’ risk premium estimate µ∗t and asset demand because we model µ∗t as a function of the

current price Pb,t and the active investor’s expected future price E[Pb,t+1|F
(a)
t ] as follows.

µ∗t =
µb,t
µm,t

=

(
E[Pb,t+1|F

(a)
t ]

Pb,t
−Rf,t

)/
µm,t, (4)

where F (a)
t is an information set of the active investor at day t and Rf,t is a risk-free rate in terms

21Refer to any college level textbook on investments for (3).
22The condition µ∗t = 1 implies that the risk premium of the portfolio is invariant with any portfolio weights.

Therefore, maximizing Sharpe ratio is equivalent to minimizing variance.
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of gross returns. Therefore, the equilibrium price Pb,t of a safe-haven asset and the active investors’

asset demand, in terms of portfolio weight w
(a)
b,t , will be endogenously determined when the market

clears. The following flowchart visualizes how a safe-have asset’s market clearing occurs by the two

types of investors.

At day t − 1

At day t

Passive investors
wb(µ

∗, σ∗, ρt−1)

Delayed order

execution, w
(p)
b,t

Market clearing

[Pb,t, w
(a)
b,t ]

Active investors
wb(µ

∗
t , σ

∗, ρ)

3.3 A Static Equilibrium of a Safe-Haven Asset Market

First, we let Q
(a)
b,t−1 and Q

(p)
b,t−1 denote the quantity of a safe-haven asset held by active and passive

investors at day t − 1, respectively. Then we normalize both the total quantity and price of a

safe-haven asset at day t−1 to unity, i.e., Pb,t−1 = 1 and Qb,t−1 = Q
(a)
b,t−1 +Q

(p)
b,t−1 = 1, respectively.

Also, we have Qb,t = Q
(a)
b,t + Q

(p)
b,t = 1 assuming the quantity of a safe-haven asset is invariant

overnight. At equilibrium, the price Pb,t of a safe-haven asset clears the market:

1 = Qb,t = Q
(a)
b,t +Q

(p)
b,t =

w
(a)
b,t A

(a)
t

Pb,t
+
w

(p)
b,t A

(p)
t

Pb,t
, (5)

where A
(a)
t is the dollar value of the active investor’s portfolio at day t while A

(p)
t is that of the

passive investor’s portfolio at day t − 1. Next, the dollar value of the active investor’ portfolio

evolves as follows.

A
(a)
t = A

(a)
t−1

(
w

(a)
b,t−1

Pb,t
Pb,t−1

+ (1− w(a)
b,t−1)Rm,t

)
,

=
Pb,t−1Q

(a)
b,t−1

w
(a)
b,t−1

(
w

(a)
b,t−1

Pb,t
Pb,t−1

+ (1− w(a)
b,t−1)Rm,t

)
,

= Q
(a)
b,t−1

Pb,t +
1− w(a)

b,t−1

w
(a)
b,t−1

Rm,t

 , (6)
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where Pb,t−1 = 1 and Rm,t is daily gross return of the stock market. Similarly, we express the dollar

value of the passive investor’ portfolio as follows.

A
(p)
t = Q

(p)
b,t−1

Pb,t +
1− w(p)

b,t−1

w
(p)
b,t−1

Rm,t

 , (7)

Finally, by plugging Equation (6) and (7) into (5), we rewrite the market clearing condition (5) as

follows.

Pb,t = w
(a)
b,t A

(a)
t + w

(p)
b,t A

(p)
t

= w
(a)
b,t Q

(a)
b,t−1

Pb,t +
1− w(a)

b,t−1

w
(a)
b,t−1

Rm,t

+ w
(p)
b,t (1−Q(a)

b,t−1)

Pb,t +
1− w(p)

b,t−1

w
(p)
b,t−1

Rm,t

 , (8)

where w
(a)
b,t is also a function of Pb,t because w

(a)
b,t depends on µ∗t in Equation (4). Then we nu-

merically find the equilibrium safe-haven asset price Pb,t, given other variables as calibrated in the

following.23

Calibration of Variables Two unconditional estimates (ρ, σ∗) are fixed at their medians of

(ρt, σ
∗
t ), from the multivariate GARCH estimation, respectively. Next, to shut down other channels,

we set ρt−2 = ρ, Rm,t = 1, Rf,t−1 = Rf,t = 1, µm,t = µm,t−1 = 0.06/252, and E[Pb,t+1|F
(a)
t ] =

E[Pb,t|F
(a)
t−1]. Then, we compute how a safe-haven asset price changes with respect to changes in

correlation (from ρt−2 to ρt−1) for different values of two free parameters w
(a)
b,t−1 and Q

(a)
b,t−1. To

calculate E[Pb,t|F
(a)
t−1], we first back out µ∗t−1 from Equation (3), given the values of free parameter

w
(a)
b,t−1, and then we compute E[Pb,t|F

(a)
t−1] from Equation (4).

3.4 Model Implications on Return Predictability

This model is about an equilibrium of a safe-haven asset market where only a subset of investors

participate in the market. Therefore, the model considers stock markets as exogenous environments

and therefore fundamentally differs from canonical asset pricing models such as CAPM. However,

the model is also free from any market frictions such as liquidity or transaction costs that can result

in return reversals, except for the passive investor’s delayed order execution.

23Alternatively, we can plug the w
(a)
b,t expression into Equation (8) and solve a polynomial equation by brute force.
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3.4.1 Model-Implied Coefficient in Predictive Regressions

Table 3 shows the model-implied coefficient a1 in predictive regressions of a safe-haven asset’s log

returns rb,t on (ρt−1 − ρt−2), i.e., changes in correlation between a safe-haven asset and the stock

market returns:

rb,t = a0 + a1(ρt−1 − ρt−2) + εt where a1 =
∂ logPb,t
∂ρt−1

∣∣∣Rm,t=1
ρt−1=ρt−2=ρ

,
(9)

where we deviate ρt−1 from ρ = ρt−2 and also Pb,t from Pb,t−1 = 1 holding others constant.

In Table 3, we compute a1 using a numerical derivative for each combination of w
(a)
b,t−1 and Q

(a)
b,t−1

ranging from 0.1 to 0.9. The model-implied coefficient a1 is negative regardless of w
(a)
b,t−1 and Q

(a)
b,t−1,

consistent with the mechanism explained in Section 3.1. This calibration exercise confirms whether

the model can replicate the coefficient a1 similar to its empirical estimate. The point estimate on

a1 of the regression using our data is −0.153 for Bitcoin where its 95% confidence interval implied

by Newey-West standard errors is (−0.236,−0.072) from Table 2. Therefore, our model can easily

produce the empirical estimate on a1 without extreme parameter values. For example, calibrating

w
(a)
b,t−1 = 0.6 and Q

(a)
b,t−1 = Q

(a)
b,t−1/Qb,t−1 = 0.3 produces a1 = −0.154.

Figure 3 visualizes Table 3 using a finer grid of w
(a)
b,t−1 and Q

(a)
b,t−1. The observed coefficient

a1 = −0.153 is about 25.4th percentile in the plot. The lower left triangular area is where the

model-implied coefficient is smaller than −0.153. The patterns in coefficients are straightforward.

Given w
(a)
b,t−1, predictability (or magnitude of the coefficient) decreases with the active investor’s

share in Bitcoin, Q
(a)
b,t−1. High Q

(a)
b,t−1 means that passive investors are only minor players in Bitcoin

markets. Therefore, changes in their hedging demands barely affect Bitcoin prices.

On the other hand, Given Q
(a)
b,t−1, predictability increases with active investor’s portfolio concen-

tration in Bitcoin, w
(a)
b,t−1. High w

(a)
b,t−1 means that the active investor sees relatively high expected

returns on Bitcoin; that is, she has a relatively more optimistic belief. Then the active investor’s

Bitcoin demand becomes less elastic such that prices should move more to clear the market. For

example, assume ρt = 0 in the optimal portfolio weight in Equation (3). Then we have a simple

expression wb = µ∗t /[µ
∗
t + (σ∗)2] for the optimal weight.

Now suppose the risk-free rate is zero and the passive investor wants to raise her position on

Bitcoin, w
(p)
b,t , because of declining correlation. Also, imagine that the active investor’s risk premium
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on Bitcoin is 0.4% per day at the beginning since she sets her expected Bitcoin price (or price

targets) on the next day at 0.4% higher than the current price. If Bitcoin price suddenly drops by

0.2% purely because of passive investors’ rebalancing sell orders, new subjective expected return of

active investors becomes about 0.6% (≈ 0.4%+0.2%) which is 50 percent (0.6/0.4−1 = 0.5) higher

than the previous number 0.4%. Therefore, the active investor is now willing to absorb passive

investor’s sell order even with a small price movement because her demand w
(p)
b,t = µ∗t /[µ

∗
t + (σ∗)2]

greatly changes. By contrast, if the active investor’s Bitcoin price target (or expected price) is only

2% higher than the current price (equivalently, her subjective expected return of Bitcoin is 2% at

the beginning), then the expected return becomes about 2.2% (≈ 2% + 0.2%) which is only 10

percent higher than the previous number 2%. In this case, the active investor might not absorb

all of passive investor’s sell orders unless the price drops further. Such a behavior of the active

investor leads to relatively stronger predictability when w
(a)
b,t−1 is high, or equivalently, when the

active investor has a relatively more optimistic belief.

3.4.2 Volatility and Return Predictability

This intuition also explains why a highly volatile safe-haven asset can show stronger return pre-

dictability. To have the same level of w
(a)
b,t−1 even with higher volatility, the active investor must

have a highly optimistic belief on the risk premium of a safe-haven asset so that strong predictabil-

ity can be observed in Bitcoin. In fact, this is exactly what happens in the Bitcoin markets. Unlike

traditional safe-haven assets like gold and long-term treasuries, Bitcoin enthusiasts are well known

for their extreme optimism, possibly fueled by its exponential price growth in the recent period.

However, the caveat is that high volatility alone does not guarantee predictability. Consider a small

illiquid stock with lottery-like payoffs or a meme stock loved by retail investors. Even if such assets

are highly volatile, no hedging or diversification demands exist for them. That is, no predictability

will appear because Q
(a)
b,t−1 ≈ 1 in Table 3.

Figure 4 visualizes 25.4th percentile of the model-implied coefficient a1 calculated with different

levels of correlation ρ = −0.5, 0,+0.5 and σ∗ between zero and five. Then we locate the model-

implied coefficients for Bitcoin (brown), gold (red), and long-term treasuries (light blue) as diamond

marks, using their DCC(1,1)-GARCH(1,1) estimates on ρ and σ∗, respectively. The model implied

coefficients for gold and long-term treasuries are practically zero, which is consistent with the
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empirical results in Table 2. Therefore, this plot implies that the pricing model in this section can

quantitatively explain the lack of predictability in gold and long-term treasuries when the model

is tuned to match Bitcoin’s predictability result with empirically plausible parameters.24 Table 4

also compares the model-implied coefficient a1 in Equation (9) with the estimated coefficient a1

in Equation (2) for Bitcoin, gold, and long-term treasuries. As expected, the model can explain

the estimated coefficient a1 within a reasonable range for Bitcoin, but not for the other safe-haven

assets.

Therefore, Bitcoin offers a unique laboratory to test the prosposed mechanism in Section 3.1

and the model in this section. Bitcoin is a rare asset that attracts both active investors with

extreme optimism (possibly due to excitement for blockchain technology) and passive investors

with strong hedging or diversification demand (possibly due to success of digital gold narrative in

uncertain economic times). Finally, with the time-varying correlation and delayed trading practice,

we observe predictability in Bitcoin. See Section 5.1 for a further discussion on how to calibrate

free parameters.

3.5 Alternative explanations

Although the mechanism in Section 3.1 sounds plausible, we also investigate other possibilities

before we formalize this hypothesis in a model. To the best of knowledge, we find that the following

two categories can cover all alternative explanations.

Alternative explanation #1: time-varying risk premium Correlations between asset re-

turns are key elements in canonical asset pricing models. The time-varying correlation can imply

a time-varying Capital Asset Pricing Model (CAPM) beta in a Conditional CAPM or a state

variable in an Intertemporal CAPM. Therefore, the traditional asset pricing models suggest that

time-varying CAPM betas or correlation levels should explain the time-variation of Bitcoin risk

premium and predict subsequent Bitcoin returns. However, we find that that these variables fail to

predict subsequent Bitcoin returns.25 Furthermore, even if we attribute the lack of predictability

to data or econometric issues of daily frequency, the sign of predictability (by changes in correla-

24Similarly, we explains the lack of predictability by correlation levels in the online appendix A.2.
25Time-varying CAPM beta estimates of Bitcoin are constructed from DCC-GARCH estimates on conditional

correlation and volatilities.
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tion) contradicts what canonical models suggest. High correlation offers only a small diversification

benefit; therefore, the risk premium should be high enough to compensate it. However, we observe

lower returns right after an increase in correlation, to the contrary.26

Alternative explanation #2: time-varying sentiments Another possibility is that changes

in correlation might be a proxy for other variables such as investors’ sentiment level. Although

this type of conjecture is hard to prove or disprove without an accurate measure of sentiments, we

find that this conjecture is highly unlikely. First, Section 4.3 and 5.3 show that the predictability

results are unaffected by various sentiment proxies in predictive regressions and machine learning

approaches, respectively. Second, if there is a common sentiment for Bitcoin and stock markets,

we should observe the opposite Bitcoin price movements the next day in the following two cases:

(1) when both assets go up because of high sentiments, vs. (2) when they go down because

of low sentiments. However, both cases imply an increase in correlation, which results in lower

subsequent Bitcoin returns in the data. Therefore, a common sentiment rather rules out, not

explain, return predictability by changes in correlation. Third, variables like common sentiments,

excessive liquidity, or degree of disagreement are highly persistent at daily frequency, yet changes

in correlation are barely serially-correlated, by construction.

4 Main Results: Bitcoin Return Predictability at Full Scale

Inspired by the model in the previous section, we introduce a more economically sensible predictor

for Bitcoin returns:

∆w
(cor)
b,(t−1):t = w

(p)
b,t − w

(p)
b,t−1,

where w
(p)
b,t ≡ wb(µ

∗ = 1, σ∗, ρt−1) is the passive investor’s optimal weight on a safe-haven asset on

day t and ρt−1 is the correlation estimate on day t−1 at market close from the DCC-GARCH model

estimation in Table 1. Following the calibration in the previous section, we set σ∗ at the median of

σ∗t from the DCC-GARCH estimation. The resulting predictor ∆w
(cor)
b,(t−1):t is a change in optimal

portfolio weight due to time-varying correlation. Holding the passive investor’s portfolio value

equal, this predictor is proportional to a dollar amount of rebalancing order on Bitcoin. Therefore,

26A level of correlation tends to be high when changes in correlation is high because cov(ρt,∆ρ(t−1):t) = cov(ρt, ρt−
ρt−1) = var(ρt) − cov(ρt, ρt−1) = var(ρt)(1 − cor(ρt, ρt−1)) > 0.

16



this new predictor is economically more sensible although it is highly correlated with changes in

correlation (∆ρt). Using this refined predictor ∆w
(cor)
b,(t−1):t, this section thoroughly investigates

Bitcoin’s return-predictability: Granger causality tests, in-sample analysis with other competing

predictors, out-of-sample predictions, and other robustness tests. All results confirm that the

Bitcoin return predictability truly exists when the correlation is time-varying.27

4.1 Data

We download Bitcoin and S&P500 daily closing price data from coinmarketcap.com and invest-

ing.com, respectively.28 Then, we combine multi-day Bitcoin returns to one-period return whenever

the US stock market is not traded. The data ranges from Dec 18, 2017 to Dec 31, 2020, which results

in 765 daily observations. We call this sample period as post-futures in that Dec 18, 2017 is when

Bitcoin futures markets begin at Chicago Mercantile Exchange (CME), followed by Chicago Board

Options Exchange (CBOE). SKEW, VIX, and S&P500 trading volume data are acquired from

investing.com. In addition, we collect other variables that are known to predict Bitcoin returns in

literature (e.g., Liu and Tsyvinski 2021): USD index returns and gold returns from investing.com,

daily treasury yield rates from the US Department of Treasury, blockchain-related attributes in-

cluding total hashrates, global block difficulty, unique address count, total Bitcoin quantity, unique

transactions count, and trading volume on major Bitcoin exchanges from blockchain.com, Wikipedia

Bitcoin pageviews from Wikipedia Pageviews Analysis, and Google search trends for Bitcoin from

trends.google.com. The Economic Policy Uncertainty Index data based on daily news are obtained

from policyuncertainty.com. See Table A.3 in the online appendix for the complete list of predictors

we consider.

4.2 Time-Dependency in Returns and Granger Causality Tests

To lay the groundwork, we first investigate how lagged Bitcoin and stock market returns predict

Bitcoin returns. Each column of Table 5 Panel A shows OLS (ordinary least squares) estimates

27The results are practically invariant even if we use ∆ρt or an alternative predictor ∆w
(cor|vol)
b,(t−1):t = wb,t(µ

∗ =

1, σ∗t−1, ρt) − wb,t(µ
∗ = 1, σ∗t−1, ρt−1)

28The US stock market closes at 4pm Eastern Standard Time (EST) whereas the Bitcoin market closes at 12am
Coordinated Universal Time (UTC). Bitcoin closing price is recorded 3 or 4 hours later than the S&P500 index on a
given day depending on daylight saving. For simplicity, we ignore this time difference and use closing price of both
assets in our analyses.
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on b
(L)
1 and their Newey-West t-statistics of the following univariate predictive regression for the

post-futures sample:

rb,t+1 = b0 + b
(L)
1 zt+1−L + εt+1,

where rb,t+1 is daily Bitcoin log returns and zt+1−L is a lagged independent variable: changes in

diversification demand ∆w
(cor)
b,(t−1):t, Bitcoin returns rb,t, or S&P500 returns rm,t for L = 1, ..., 4. We

observe that the coefficient is large (0.51) and significant (t-statistics = 4.15) only for ∆w
(cor)
b,(t−1):t,

that is, the lagged Bitcoin demand change due to correlations with lag L = 1. The coefficient

reduces to less than its half (0.21) at the second lag L = 2 but its size is still the second largest

among all in Panel A. The decreasing pattern in coefficients is consistent with the sequential learning

effect that gradually fades.

We conduct the Granger causality tests (Granger 1969) in multivariate time-series setting:

rb,t+1 = b0 +
4∑

L=1

b
(L)
1 zt+1−L + εt+1,

Table 5 Panel B reports three different regression results. First, we include lagged changes in

correlation ∆w
(cor)
b,(t−1):t and lagged Bitcoin returns. Second, we add lagged S&P500 returns to the

first case. Finally, we repeat the second case using the weighted least squares (WLS) with weights

that equal the inverses of time-varying variance estimates from DCC(1,1)-GARCH(1,1). We confirm

that the same pattern as the univariate regressions in Panel A appears in all cases of the Granger

causality tests in Panel B. Lagged Bitcoin returns and lagged S&P500 returns fail to predict Bitcoin

returns in any case.

4.3 In-Sample Analysis with Other Predictors

We consider the following predictive regression model with other variables:

rb,t+1 = b0 + b1∆w
(cor)
b,(t−1):t + Ztγ + εt+1, (10)

where b1 measures how subsequent Bitcoin price reacts to the lagged changes in correlation. Ta-

ble 6 shows that a one-standard-deviation increase (decrease) in diversification demand changes

∆w
(cor)
b,(t−1):t predicts 0.51% higher (lower) Bitcoin returns the next day. R2 in a univariate regres-
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sion is 1.15% at daily frequency, which is larger than R2 = 1.05% by ∆ρt. The coefficient b1

estimates remains stable around 0.5 and statistically significant with various control variables or

without the sample after the COVID-19 outbreak.29 Note our main predictor ∆w
(cor)
b,(t−1):t is a time

difference and almost serially-uncorrelated; the first-order autocorrelation is −0.06 (−0.01 before

COVID-19). Thus, our predictive regression is free from the common bias in predictive regressions

(Stambaugh 1999).

By contrast, time-varying daily CAPM βt, constructed by DCC-GARCH estimates, barely

affects next-day Bitcoin returns. The coefficient on lagged Bitcoin returns is small, -0.42, and

insignificant (t-statistics between -1.72 and -1.77). Lagged trading volume of Bitcoin negatively

predicts Bitcoin returns but becomes statistically insignificant when other Bitcoin attributes are

included as controls in regression. Economic Policy Uncertainty (EPU) Index with a coefficient

estimate around 0.63 is positively associated with subsequent Bitcoin returns but shy of statistical

significance (t-statistics between 1.67 and 1.69). Table A.3 in the online appendix provides the

complete list of control variables included in Table 6.

4.4 Out-of-Sample Predictability

We perform out-of-sample tests to address potential issues in the in-sample estimation: over-fitting,

look-ahead biases, and coefficient instability. We re-estimate the DCC(1,1)-GARCH(1,1) and fit

predictive regression models every trading day in real time to forecast sequentially Bitcoin returns

using ∆ρt without any look-ahead bias. We increase the estimation (training) window after initial

training with one year of data such that our prediction period starts from the beginning of 2019.

Table 7 shows the out-of-sample performances of OLS (Ordinary Least Squares), WLS (Weighted

Least Squares), LAD (Least Absolute Deviation), and Rank regressions. We report two performance

metrics in addition to the corresponding in-sample R2. Campbell and Thompson (2008) suggest

out-of-sample R2 statistics:

R2
OS = 1− SSE(p)

SSE(h)
, (11)

where SSE(p) is the sum of squared forecast errors by our real-time predictive regression model

29We do not report here, but the results are practically invariant with other linear models such as WLS (Weighted
Least Squares), LAD (Least Absolute Deviation), and Rank regressions.
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whereas SSE(h) is by the historical average of the past Bitcoin returns as a benchmark fore-

cast. Positive R2
OS is regarded as evidence for return-predictability beyond that by the benchmark

forecast.

While R2
OS uses historical average returns as a benchmark, Gu, Kelly, and Xiu (2020) argue that

this benchmark is flawed when analyzing individual stock returns with noisy historical averages.

To deal with that, they propose a modified out-of-sample performance measure, denoted as R2∗
OS ,

that compares prediction against a forecast value of zero:

R2∗
OS = 1− SSE(p)

SSE(0)
(12)

In other words, SSE(0) in R2∗
OS uses flat zero as a benchmark forecast rather than historical average

returns. In our test sample, R2∗
OS is lower than R2

OS , which means the historical average performs

worse than zero as a forecast for Bitcoin returns.

In general, R2
OS is typically lower than in-sample R2. We find the same pattern in the ordinary

least-squares estimation (OLS) in Table 7. However, our robust alternatives (WLS, LAD and

Rank regressions) even outperform the in-sample predictions. Even though R2∗
OS is generally lower

than R2
OS , it largely outperforms in-sample R2 for median and rank-based estimation (LAD and

Rank). Therefore, concerns about potential over-fitting and coefficient instability are well cleared.

Also, outperforming out-of-sample forecasts suggest that investors may sequentially learn about

the parameters in the time-series model in addition to the time-varying correlations. Strong out-of-

sample predictability by robust linear regression models also suggests that our return predictability

is not driven by outliers or influential points since such methods are less sensitive to the extreme

observations. Also, excluding the COVID-19 period sample barely changes the predictability.

This out-of-sample predictability evidence is impressive even to practitioners. Campbell and

Thompson (2008) argue that even a small R2
OS , such as 0.5% at monthly frequency, can deliver

economically meaningful return predictability to investors, let alone at daily frequency. Therefore,

this out-of-sample Bitcoin return predictability offers a valuable trading opportunity to investors

in practice.
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5 Discussion

This section provides additional discussions and results to resolve remaining concerns from the

previous sections.

5.1 Calibrate Free Parameters in the Model

The model in Section 3 has two free parameters that are difficult to calibrate using the data: w
(a)
b,t−1

and Qb,t−1. However, we can make a statistical inference on them through the model as a lens.

That is, assuming the model in Section 3 is correct, we can translate the confidence interval of a1

coefficient in Table 2 into that of (w
(a)
b,t−1, Qb,t−1). Figure A.1 in the online appendix shows 95%

confidence region of (w
(a)
b,t−1, Qb,t−1). As expected, the interval includes (w

(a)
b,t−1 = 0.6, Q

(a)
b,t−1 = 0.3)

that produces a1 = −0.154. We admit that the information from a single parameter a1 cannot

identify two parameters (w
(a)
b,t−1, Qb,t−1); therefore, these two free parameters are not fully identified

in our parsimonious model.

5.2 Placebo Test

If passive Bitcoin investors constantly monitor the correlation dynamics, they should notice when

correlation is time-varying and when it is not. If the true correlation is constant for certain period,

passive investors should not respond to correlation-change-like observations. For example, even if

the true correlation is zero and constant, returns of the two assets can have the same sign several

times in a row, but this event should not be recognized as an increase in correlation. In a DCC-

GARCH frame work (Equation 1), correlation is constant if a = 0. But if a passive investor falsely

uses a > 0, then she will recognize this event as an increase in correlation.

Table 8 suggests how we can exploit a structural break in correlation dynamics for a placebo

test.30 We separately fit DCC-GARCH models to three periods: 1) from 01/01/2015 to 12/31/2020

(full sample, henceforth), 2) from 01/01/2015 to 12/17/2017 (pre-futures sample, henceforth), and

30Co-occurrence of the structural break and futures trading is interesting and deserves deeper investigations in
both theoretical and empirical aspects. However, the results and conclusion of our analysis do not depend on the
causal link between the structural break and futures trading. Therefore, finding the root cause of the structural
break is beyond the scope of this paper, let alone various forces that exist behind the observed structural break.
For example, changes in overall money supply or fund flows can generate positive correlations across different asset
classes. Co-varying risk appetites or speculative sentiments can do the same. Yet, a rising demand of safe haven
assets can generate negative correlations through a self-fulfilling prophecy. If each of these factors acts dominantly
in different times, the correlation between Bitcoin and the stock market can be time-varying.
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3) from 12/18/2017 to 12/31/2020 (post-futures sample, henceforth). In the table, the parameter

a in DCC(1,1)-GARCH(1,1) model is zero in the pre-futures sample but 0.030 (t-stat 2.01) in the

post-futures sample. The estimated conditional correlations are practically zero and flat for the

pre-futures sample while the correlations fluctuate for the post-futures sample.

If our hypothesis in Section 3.1 is correct, we should observe absence of predictability when

the correlation is practically constant. Instead, the return predictability should appear even for a

constant-correlation period if an alternative mechanism explains the observed return predictability

or if investors fail to recognize true correlation dynamics.

To test this idea, we generate illusory time-varying correlations for the pre-futures sample, by

using the DCC-GARCH estimates from the full-sample, as if investors incorrectly use the full-sample

parameters to track the time-varying correlation. As expected, return predictability disappear in

the pre-futures period when the true correlation is constant. Table 9 shows that the coefficient on

∆ρt for the pre-futures sample is small and insignificant, ranging from -0.07 to -0.10 with t-statistics

around -0.6. Therefore, this placebo test supports our hypothesis in Section 3.1.

5.3 Robustness Tests

We perform extensive robustness tests to solidify the return predictability evidence. First, we

use other types of multivariate GARCH models to estimate time-varying correlations. Second,

we run quantile regressions at different quantiles to confirm robustness against non-normality and

extreme observations. Third, we trim or winsorize the data since Bitcoin returns are highly volatile

and fat-tailed. Lastly, we use machine learning techniques to check how interactions between

competing predictors and nonlinearity can affect the results. We use LASSO, Group Lasso, Elastic

Net, Random Forest, Gradient Boosting Machine, and Neural Network with one hidden layer. We

find that the return-predictability evidence is highly robust and practically invariant to all these

alternative specifications. We provide the detailed results in the online appendix A.3.

6 Conclusion

Bitcoin offers a unique opportunity to understand the asset pricing implications of heterogeneous

investors with different beliefs (optimism vs. pessimism) and different investment objectives (price

22



appreciation vs. diversification). The degree of such heterogeneity in Bitcoin markets is so large that

strong daily return predictability is observed, in contrast to traditional safe-haven asset markets.

Furthermore, Bitcoin opens a gate for new class of assets, e.g., NFT (non-fungible token). We

expect that new assets with different characteristics will also provide an opportunity to reveal new

asset pricing implications as Bitcoin does in this paper. Therefore, this study sets an example for

the future researches with new assets on the way.

Note that the return predictability in this paper differs from that of stock markets in the

literature. Above all, Bitcoin’s daily return predictability in the paper is unrelated to time-varying

risk premium. Instead, passive investors’ incentive to monitor the correlation plays a crucial role

in predictability. Therefore, this predictability is likely to fade away if the correlation becomes

no longer time-varying or if Bitcoin can no longer attract passive investors with diversification

demands. However, the main idea of the paper is not only about correlation per se or diversification

benefits. When a new asset is uncertain in various aspects, investors with different perspectives

can seek what they want from the same asset even if they want different benefits from it. If Bitcoin

remains highly uncertain in other aspects and still offers various benefits, we can expect another

predictability or research opportunity from Bitcoin.

However, we admit that our analysis has some limitations. First, the stylized model in the

paper is purely static; it does not internalize investors’ learning dynamics in equilibrium. However,

building a full dynamic model is a challenge because the model should also internalize all other non-

conventional aspects of Bitcoin pricing, such as gradual adoption, mining cost, a fork, halving, and

sentiments. Such a unified model would be too complicated to analyze and test. Second, our model

is based on the assumption of mean-variance investors. However, Bitcoin is well known for its high

skewness and kurtosis. The first two moments have certainly a major effect, yet considering higher

moments might lead to other interesting findings. Finally, we do not explain why correlations start

to fluctuate as soon as Bitcoin futures trading begins. Also, we do not build a model that can

endogenously generate time-varying correlation. We only use such a structural break to split the

sample for a main analysis (with post-futures sample) and a placebo test (with pre-futures sample).

We leave these unanswered topics for future research.
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Figure 1: Time-Varying Correlations of Safe-Haven Assets with S&P500 Index

The figure shows the time-varying correlation estimates from DCC(1,1)-GARCH(1,1) models with daily

log returns of S&P500 Index and a safe-haven asset: Bitcoin (solid black), gold (dashed black), long-term

treasuries (solid grey with circles).
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Figure 2: Comparative Statics Analysis of the Bitcoin Pricing Model

Panel (a) shows how Bitcoin price changes when the non-speculative investors’ estimate on the correlation

changes at static equilibrium as a comparative static analysis. The vertical axis is the subsequent log

returns (%) of Bitcoin, in excess of log returns without correlation changes. Panel (b) repeats Panel (a)

but replaces the horizontal axis by changes in non-speculative investors’ optimal portfolio weights (%) on

Bitcoin, corresponding to the correlation changes in Panel (a). We calibrate model parameters following

Table 3, including w
(a)
b,t−1 = 0.6 and Q

(a)
b,t−1/Qb,t−1 = 0.3.
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Figure 3: Model Implied Coefficient in Predictive Regressions (I)

This figure visualizes Table 3 using a finer grid of w
(a)
b,t−1 and Q

(a)
b,t−1. The observed coefficient a1 = −0.153

is about 25.4th percentile of the square area in the plot. That is, the lower left triangular area comprises

25.4% of the whole square in the plot, and the model-implied coefficient is smaller than −0.153 in that area.
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Figure 4: Model Implied Coefficient in Predictive Regressions (II)

The figure shows the model-implied coefficient a1 in Equation (9) for different levels of correlation

(+0.1, 0,−0.05) and volatility ratio (σb/σm) ranging from zero to 5.5. The 25.4th percentile of a1 is chosen

so that the model is tuned to match the Bitcoin’s return predictability result. Then it is calculated from a

plot like Figure 3 for each combination of correlation and volatility ratio (σb/σm).
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Table 1: Selected Parameter Estimates of DCC-GARCH Models

This table shows the estimates of parameters a and b and associated t-statistics (in parenthesis) by DCC(1,1)-

GARCH(1,1) model for Bitcoin, gold, and long-term treasuries when they are paired with S&P500 index,

respectively. The sample period ranges from 12/18/2017 to 12/31/2020.

Bitcoin Gold Long-term
treasuries

DCC(1,1)

a 0.030 0.043 0.083
(2.01) (2.19) (3.39)

b 0.948 0.916 0.796
(30.84) (28.49) (13.36)
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Table 2: Return Predictability of Safe-Haven Assets

This table shows the results of univariate predictive regressions in Equation (2):

rb,t+1 = a0 + a1xt + εt+1

where rb,t+1 is daily Bitcoin log returns and xt can be any variable in the following. ρt is lagged Bitcoin-

S&P500 correlation level estimated from DCC(1,1)-GARCH(1,1), βt is lagged CAPM β, covt is lagged

Bitcoin-S&P500 covariance, and ∆ρt is a lagged change in correlation. We compute βt and covt using corre-

lation and volatility estimates from DCC(1,1)-GARCH(1,1). All predictor variables xt are not standardized.

‘pre-COVID’ indicates that regression is performed with data from 12/18/2017 to 02/29/2020. ‘LAD’ is

short for least absolute deviations regression and ‘Rank’ refers to a rank-based estimation (Hettmansperger

and McKean 2010). ‘INT’ means both dependent variable and predictor adopt Inverse Normal Transfor-

mation (INT) based on Beasley, Erickson, and Allison (2009). ‘Trimmed’ indicates that both dependent

variable and predictor are trimmed at 2.5% and 97.5%. All t-statistics are Newey West t-statistics except

for LAD and Rank where original t-statistics are used.

Predictor coefficient t-statistic R2

xt a1 (NW) (%)

1. Gold-S&P500

∆ρt -0.005 -0.487 0.054

2. VGLT-S&P500

∆ρt (VGLT-S&P500) -0.003 -0.534 0.049

3. Bitcoin-S&P500

∆ρt -0.153 -3.682 1.055
∆ρt (pre-COVID) -0.153 -2.888 1.079
∆ρt (LAD) -0.129 -3.816 1.017
∆ρt (Rank) -0.142 -4.085 1.039
∆ρt (INT) -0.134 -3.598 1.787
∆ρt (Trimmed) -0.245 -2.824 1.255

ρt 0.001 0.049 0.000
βt -0.002 -0.735 0.063
covt 2.682 0.664 0.063
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Table 3: Model-Implied Coefficients in Predictive Regressions (Corr. Changes)

This table shows the model-implied coefficient:

a1 =
1

Pb,t
E

[
∂Pb,t+1

∂ρt

]
= E

[
∂ logPb,t+1

∂ρt

]
,

which corresponds to the slope coefficient a1 in the predictive regression of Bitcoin returns rb,t+1 on (ρt−ρt−1),
i.e., changes in correlation between Bitcoin and the stock market returns:

rb,t+1 = a0 + a1(ρt − ρt−1) + εt+1

We compute a1 using a numerical derivative for each combination of w
(a)
b,t−1 and Q

(p)
b,t−1/Qb,t−1. At day t−1,

speculative investors have the optimal weight on Bitcoin w
(a)
b,t−1 at t− 1. Also, at t− 1, speculative and non-

speculative investors who participate in trading at t hold Q
(a)
b,t−1 and Q

(p)
b,t−1 units of Bitcoin, respectively,

where Qb,t−1 = Q
(a)
b,t−1 +Q

(p)
b,t−1. The point estimate on a1 of the regression using our data is −0.153 where

its 95% confidence interval implied by Newey-West standard errors is (−0.236,−0.072). Therefore, we can

reverse-engineer two parameters w
(a)
b,t−1 and Q

(a)
b,t−1/Qb,t−1 by matching the point estimate to the numbers

in the table. For example, calibrating w
(a)
b,t−1 = 0.6 and Q

(p)
b,t−1/Qb,t−1 = 0.3 produces a1 = −0.154 if other

parameters are calibrated at their empirically representative values as in Section 3.3.

Q
(a)
b,t−1/Qb,t−1

w
(a)
b,t−1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 -0.053 -0.024 -0.014 -0.009 -0.006 -0.004 -0.003 -0.001 -0.001
0.2 -0.117 -0.053 -0.031 -0.020 -0.013 -0.009 -0.006 -0.003 -0.001
0.3 -0.195 -0.088 -0.052 -0.033 -0.022 -0.015 -0.010 -0.006 -0.002
0.4 -0.291 -0.133 -0.078 -0.051 -0.034 -0.023 -0.015 -0.009 -0.004
0.5 -0.408 -0.189 -0.112 -0.072 -0.048 -0.032 -0.021 -0.012 -0.005
0.6 -0.554 -0.260 -0.154 -0.100 -0.067 -0.045 -0.029 -0.017 -0.008
0.7 -0.736 -0.350 -0.209 -0.136 -0.091 -0.061 -0.040 -0.023 -0.010
0.8 -0.964 -0.467 -0.281 -0.184 -0.124 -0.083 -0.054 -0.031 -0.014
0.9 -1.253 -0.621 -0.377 -0.248 -0.167 -0.113 -0.073 -0.043 -0.019
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Table 4: Coefficient in Predictive Regressions

This table compares the model-implied coefficient a1 in Equation (9) with the estimated coefficient a1 in

Equation (2). In case of Bitcoin, the estimate a1 = −0.153 (from Table 2) matches the model-implied

coefficient at its 25.4th percentile. Two unconditional estimates (ρ, σ∗) are the medians of (ρt, σ
∗
t ), from the

fitted DCC(1,1)-GARCH(1,1) reported in Table 1, respectively. “Data” column repeats estimates for a1 (in

Table 2).

Safe-Haven Asset ρ σ∗ Coefficient a1

Model-implied Data t-stat.

37.5th 25.4th 12.5th

Bitcoin 0.095 4.993 -0.078 -0.153 -0.396 -0.153 (-3.682)
Gold 0.000 0.895 -0.000 -0.000 -0.000 -0.005 (-0.487)
Long-Term Treasuries -0.376 0.779 -0.000 -0.000 -0.000 -0.003 (-0.534)
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Table 5: Time-Dependency in Returns and Granger Causality Tests

Panel A shows OLS (ordinary least squares) estimates on the slope coefficient a
(L)
1 and Newey-West t-

statistics of the following univariate predictive regression for the post-futures sample:

rb,t+1 = b0 + b
(L)
1 zt+1−L + εt+1,

where rb,t+1 is daily Bitcoin log returns (%) and zt+1−L is a lagged independent variable: Bitcoin demand

changes due to correlation ∆w
(cor)
b,(t−L):t (standardized), Bitcoin returns rb,t, or S&P500 returns rm,t for L =

1, ..., 4. Each column in Panel A is from an individual univariate regression. On the other hand, Panel B
shows three Granger causality test results in multivariate time-series setting:

rb,t+1 = b0 +

4∑
L=1

b
(L)
1 zt+1−L + εt+1,

WLS refers to weighted least squares with weights that equal the inverses of time-varying variance estimates

from DCC(1,1)-GARCH(1,1) fitting.

∆w
(cor)
(t−L):(t−L+1) Bitcoin returns S&P500 returns

L (lag) 1 2 3 4 1 2 3 4 1 2 3 4

Panel A: Univariate time-series regression

a
(L)
1 0.51 0.21 -0.13 0.01 -0.07 0.08 0.05 -0.01 -0.15 0.10 0.02 -0.02

t-stat 4.15 0.48 -0.66 0.06 -1.49 1.87 1.31 -0.20 -1.00 1.07 0.11 -0.20

Panel B: Granger causality tests

OLS coef. 0.43 0.21 -0.14 -0.07 -0.08 0.06 0.05 0.00
t-stat 2.68 0.47 -0.82 -0.36 -1.76 1.16 1.25 0.07

OLS coef. 0.42 0.21 -0.13 -0.08 -0.07 0.05 0.05 0.00 -0.09 0.03 0.00 -0.01
t-stat 2.64 0.49 -0.75 -0.42 -1.59 1.07 1.39 0.02 -0.67 0.30 0.01 -0.08

WLS coef. 0.65 0.25 -0.07 -0.06 0.01 0.04 0.07 0.02 0.13 0.06 -0.02 -0.07
t-stat 3.23 1.26 -0.33 -0.32 0.21 0.76 1.53 0.55 0.99 0.42 -0.19 -0.57
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Table 6: In-Sample Predictive Regressions for Bitcoin

The table shows the coefficient estimates and associated robust t-statistics in the predictive regression (10):

rb,t+1 = b0 + b1∆w
(cor)
b,(t−1):t + Ztγ + εt+1,

where rb,t+1 is daily Bitcoin log returns (%). ∆w
(cor)
b,(t−1):t refers to (standardized) changes in non-speculative

Bitcoin demand due to correlation changes from t − 1 to t, respectively. Robust t-statistics in parenthesis

are calculated from Newey and West (1987) and Newey and West (1994). Other predictor variables Zt

include lagged Bitcoin returns rb,t = log(Pb,t) − log(Pb,t−1), lagged CAPM beta βt, lagged Bitcoin trade

volume V olumeb,t, Economic Policy Uncertainty index (policyuncertainty.com) EPUb,t, and additional con-

trol variable groups. In Table A.3 in the oniline appendix, column ‘CG’, we classify each additional control

variable into one of the following groups: Group M (market attributes), Group B (blockchain attributes),

and Group L (extra lagged returns). When including a control variable group in regression, we use the first

two principal components from that group. Note that investor attention variables related to Google search

trends for Bitcoin are based on Liu and Tsyvinski (2021). Group L includes rb,t−L for L = 1, ..., 4 and rm,t−L

for L = 0, ..., 4, implying Granger causality test.

Predictor Post-futures Post-futures before COVID-19
(12/18/2017 to 12/31/2020) (12/18/2017 to 02/29/2020)

(1) (2) (3) (4) (5) (6) (7) (8)

∆w
(cor)
b,(t−1):t 0.51 0.47 0.47 0.47 0.50 0.47 0.47 0.48

(4.15) (2.89) (2.83) (2.80) (3.16) (2.76) (2.61) (2.37)

rb,t -0.42 -0.42 -0.42 -0.22 -0.22 -0.22
(-1.77) (-1.73) (-1.72) (-0.81) (-0.80) (-0.80)

βt 0.04 0.06 0.06 0.06 0.07 0.09
(0.21) (0.29) (0.29) (0.27) (0.31) (0.38)

V olumeb,t -0.58 -0.55 -0.55 -0.73 -0.91 -0.86
(-2.59) (-1.37) (-1.43) (-3.48) (-1.93) (-1.76)

EPUb,t 0.62 0.63 0.62 0.21 0.20 0.21
(1.67) (1.68) (1.69) (0.98) (0.93) (0.96)

Controls M MB MBL M MB MBL

R2 (%) 1.15 3.94 3.98 4.00 1.17 3.80 3.91 4.20
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Table 7: Out-of-Sample Predictive Regressions

This table repeats column (1) of Table 6 in a completely out-of-sample fashion. The reported numbers are
in- and out-of-sample performance measures of the predictive regression:

rb,t+1 = b0 + b1∆w
(cor)
b,(t−1):t + εt+1.

At each day t, we re-estimate ∆xb,(t−1):t (from DCC-GARCH) and (b0, b1) while expanding a training window

without any look-ahead biases. We compare four different estimation methods: ordinary least squares (OLS),

weighted least squares (WLS), least absolute deviation (LAD, median), and rank-based estimation (Rank)

from Hettmansperger and McKean (2010). For WLS weights, we use reciprocals of real-time time-varying

variance estimates from DCC(1,1)-GARCH(1,1). R2
IS is in-sample R2. R2

OS is defined in Equation (11)

following Campbell and Thompson (2008) while R2∗
OS is defined in Equation (12) following Gu, Kelly, and

Xiu (2020).

Evaluation period 1/2/2019 to 12/31/2020 1/2/2019 to 2/29/2020

OLS WLS LAD Rank OLS WLS LAD Rank

∆w
(cor)
b,(t−1):t, from S&P500

R2
IS (%) 1.29 1.17 0.92 0.97 1.47 1.36 1.07 1.07

R2
OS (%) 1.07 1.54 2.32 2.33 1.49 2.07 3.49 3.52

R2∗
OS (%) -0.08 0.40 1.19 1.20 -0.55 0.04 1.49 1.52
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Table 8: Selected Parameter Estimates of DCC-GARCH Models in Sub-Periods

This table shows the estimates of parameters a and b and associated t-statistics in parenthesis by DCC(1,1)-

GARCH(1,1) model with Bitcoin and S&P500 for the pre-futures, the post-futures, and the full sample

period. A full set of parameter estimates are reported in the online appendix A.3.1.

Sample Pre-futures Post-futures Full

from 01/01/2015 12/18/2017 01/01/2015
to 12/17/2017 12/31/2020 12/31/2020

DCC(1,1)

a 0.000 0.030 0.016
(0.00) (2.01) (1.52)

b 0.925 0.948 0.964
(2.94) (30.84) (28.84)

Table 9: Predictive Regressions for Bitcoin in Sub-Periods

This table repeats columns (1) of Table 6 for three different sample periods: full (01/01/2015 to 12/31/2020),

pre-futures (01/01/2015 to 12/17/2017) and post-futures (12/18/2017 to 12/31/2020). The reported numbers

are coefficients and associated Newey-West t-statistics (in parenthesis). I(pre) is an indicator function whose

value takes one for the pre-futures sample and zero otherwise whereas I(post) is similar but for the post-

futures sample. For the first two columns, ∆w
(cor)
b,(t−1):t is estimated using the full sample while using only

post-futures sample for the last column.

Sample Pre-futures Post-futures Full

from 01/01/2015 12/18/2017 01/01/2015
Predictor to 12/17/2017 12/31/2020 12/31/2020

∆w
(cor)
b,(t−1):tI

(pre) -0.10 -0.10

(-0.52) (-0.72)

∆w
(cor)
b,(t−1):tI

(post) 0.51 0.52

(4.15) (4.35)

R2 (%) 0.06 1.15 0.68
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A.1 95% Confidence Interval of (w
(a)
b,t−1, Qb,t−1)

Figure A.1: Model Implications II

The figure shows 95% confidence interval of (w
(a)
b,t−1, Qb,t−1) that matches that of the coefficient estimate

(a1) in the predictive regression for Bitcoin in Table 2.
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A.2 Model-Implied Return-Predictability of Correlation Level

Table A.1 shows the model-implied coefficient a
(l)
1 in predictive regressions of Bitcoin returns rb,t+1

on ρt, i.e., the level of correlation between Bitcoin and the stock market returns:

rb,t+1 = a
(l)
0 + a

(l)
1 ρt + εt+1 where a

(l)
1 =

E[r
(+)
b,t+1]− E[r

(−)
b,t+1]

ρ
(+)
t − ρ(−)t

,

where ρ
(+)
t = ρ∗ + SD(ρt), ρ

(−)
t = ρ∗ − SD(ρt), (ρ∗, ρt) are the unconditional and conditional cor-

relations from the DCC-GARCH estimation, respectively, and SD(ρt) ≈ 0.15. On the other hand,

E[r
(+)
b,t+1] and E[r

(−)
b,t+1] are the model-implied Bitcoin log returns corresponding to the correlation

level ρ
(+)
t and ρ

(−)
t , respectively. To compute E[r

(+)
b,t+1], we first find E[ρt+1|ρ(+)

t ] from Equation

(1). Then compute the equilibrium Bitcoin prices at t + 1 when ρt = E[ρt+1|ρ(+)
t ] and ρt = ρ

(+)
t ,

respectively, holding others constant. Finally, we have a gross return that equals the ratio of those

two prices, and its logarithm is E[r
(+)
b,t+1]. We compute E[r

(−)
b,t+1] in a similar fashion.

The point estimate on a
(l)
1 of the regression using our data is practically zero, (â

(l)
1 = 0.0006),

where its 95% confidence interval implied by Newey-West standard errors is (−0.0946,+0.0957).

80.2% of the model-implied coefficient a
(l)
1 in Table A.1 fall between zero and 0.001. Most impor-

tantly, our model can simultaneously generate both a1 and a
(l)
1 matching their empirical estimates

with a common choice of w
(a)
b,t−1 and Q

(a)
b,t−1 = Q

(a)
b,t−1/Qb,t−1. The model confirms that the cor-

relation level cannot predict Bitcoin returns while its change can. Therefore, these two tables

quantitatively support our explanation on the Bitcoin return predictability puzzle.

A.3 Robustness Tests

A.3.1 DCC-GARCH Models

We also consider alternative GARCH models with conditional correlations. The Exponential Gen-

eralized Autoregressive Conditional Heteroscedastic (EGARCH) model (Nelson 1991) can capture

the leverage effects in asset returns — asymmetric responses of conditional variances to negative or

positive shocks. On the other hand, an asymmetric response to joint shocks in conditional correla-

tions can be captured by the Asymmetric Generalized Dynamic Conditional Correlation (AG-DCC)
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Table A.1: Model-Implied Coefficients in Predictive Regressions (Corr. Levels)

This table repeats Table 3 but instead shows the model-implied coefficient:

a
(l)
1 =

E[r
(+)
b,t+1]− E[r

(−)
b,t+1]

ρ
(+)
t − ρ(−)

t

,

where ρ
(+)
t = ρ∗ + SD(ρt), ρ

(−)
t = ρ∗ − SD(ρt), (ρ∗, ρt) are the unconditional and conditional correlations

from the DCC-GARCH estimation, respectively, and SD(ρt) ≈ 0.15. On the other hand, E[r
(+)
b,t+1] and

E[r
(−)
b,t+1] are the model-implied Bitcoin log returns corresponding to the correlation level ρ

(+)
t and ρ

(−)
t ,

respectively. The coefficient a
(l)
1 corresponds to the slope coefficient in the predictive regression of Bitcoin

returns rb,t+1 on ρt, i.e., levels of correlation between Bitcoin and the stock market returns:

rb,t+1 = a
(l)
0 + a

(l)
1 ρt + εt+1

To compute E[r
(+)
b,t+1], we first find E[ρt+1|ρ(+)

t ] from Equation (1). Then compute the equilibrium Bitcoin

prices at t+ 1 when ρt = E[ρt+1|ρ(+)
t ] and ρt = ρ

(+)
t , respectively, holding others constant. Finally, we have

a gross return that equals the ratio of those two prices, and its logarithm is E[r
(+)
b,t+1]. We compute E[r

(−)
b,t+1]

in a similar fashion. The point estimate on a
(l)
1 of the regression using our data is practically zero, 0.0006,

where its 95% confidence interval implied by Newey-West standard errors is (−0.0946,+0.0957). Therefore,

the model can simultaneously generate both a1 and a
(l)
1 matching their empirical estimates with a common

choice of w
(a)
b,t−1 and Q

(a)
b,t−1 = Q

(a)
b,t−1/Qb,t−1.

Q
(a)
b,t−1/Qb,t−1

w
(a)
b,t−1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.0003 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 0.0006 0.0003 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000
0.3 0.0011 0.0004 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000
0.4 0.0017 0.0007 0.0004 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000
0.5 0.0027 0.0010 0.0006 0.0004 0.0002 0.0002 0.0001 0.0001 0.0000
0.6 0.0040 0.0015 0.0008 0.0005 0.0003 0.0002 0.0001 0.0001 0.0000
0.7 0.0059 0.0021 0.0011 0.0007 0.0004 0.0003 0.0002 0.0001 0.0000
0.8 0.0085 0.0030 0.0016 0.0010 0.0006 0.0004 0.0003 0.0001 0.0001
0.9 0.0120 0.0042 0.0022 0.0013 0.0008 0.0006 0.0003 0.0002 0.0001
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model (Cappiello, Engle, and Sheppard 2006). As a special case, an Asymmetric DCC (A-DCC)

model modifies the DCC equation as follows.

Qt = (R̄− a2R̄− b2R̄− g2N̄) + a2εt−1ε
′
t−1 + g2nt−1n

′
t−1 + b2Qt−1

where a, b, and g are scalar parameters; N̄ = E[ntn
′
t] and nt = I[εt < 0] ◦ εt where I[.] is

an indicator function and “◦” represents Hadamard product. The following table shows that the

return-predictability results are robust to different types of DCC-GARCH models.A.1

A.1Although we do not report here, we find that adding autoregressive components in the mean function of DCC-
GARCH model further strengthen our results.
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Table A.2: Parameter Estimates of DCC-GARCH Models

The table shows parameter estimates and associated t-statistics in parenthesis for different DCC-GARCH

models. E(1,1) refers to EGARCH(1,1) and a(1,1) refers to Asymmetric Dynamic Conditional Correlation

a-DCC(1,1). Panel A, B, and C are for full, pre-futures, and post-futures sample periods, respectively. Panel

A and B only report DCC parameters a and b while Panel C also includes GARCH parameter estimates

and information criteria. DCC-a estimates are all zeros in the pre-futures period and become positive and

overall significant in the post-futures period across all DCC-GARCH models. This result implies a constant

correlation in the pre-futures period and time-varying correlations in the post-futures period.

DCC order (1,1) (1,1) (1,1) (1,1) a(1,1)
GARCH order (1,1) E(1,1) (2,1) (1,2) (1,1)

Panel A: Full sample period, 01/01/2015−12/31/2020

DCC
a 0.016 (1.52) 0.014 (1.61) 0.016 (1.43) 0.016 (1.43) 0.015 (1.94)
b 0.964 (28.84) 0.970 (37.78) 0.963 (26.55) 0.963 (26.24) 0.960 (27.13)

Panel B: Pre-futures period, 01/01/2015−12/17/2017

DCC
a 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00)
b 0.925 (2.94) 0.926 (2.85) 0.924 (3.77) 0.926 (3.51) 0.942 (5.53)

Panel C: Post-futures period, 12/18/2017−12/31/2020

DCC
a 0.030 (2.01) 0.025 (1.88) 0.034 (1.94) 0.032 (1.99) 0.028 (1.88)
b 0.948 (30.84) 0.957 (33.67) 0.941 (26.86) 0.944 (28.54) 0.948 (30.47)
g 0.007 (0.37)

GARCH-Bitcoin
α1 0.192 (1.96) -0.127 (-1.17) 0.037 (0.76) 0.223 (1.80) 0.192 (1.96)
α2 0.266 (1.66)
β1 0.703 (10.86) 0.826 (18.74) 0.522 (4.59) 0.1621 (0.96) 0.703 (10.85)
β2 0.480 (3.52)
γ1 0.353 (1.98)

GARCH-S&P500
α1 0.285 (3.55) -0.152 (-3.06) 0.231 (1.76) 0.285 (2.14) 0.285 (3.56)
α2 0.093 (1.09)
β1 0.714 (9.88) 0.936 (53.32) 0.675 (4.85) 0.715 (1.08) 0.714 (9.88)
β2 0.000 (0.00)
γ1 0.450 (4.93)

Predictive Regression: rb,t+1 = b0 + b1∆w
(cor)
b,(t−1):tεt+1

∆w
(cor)
b,(t−1):t 0.513 (4.15) 0.189 (3.61) 0.518 (4.16) 0.512 (4.14) 0.514 (4.39)

R2 (%) 1.15 1.05 1.18 1.15 1.16
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A.3.2 Quantile Regression

We repeat our main predictive regression with quantile objective functions to confirm robustness

against non-normality and extreme observations. The quantile regression satisfies the following:

Q(τ) = b0 + b1∆w
(cor)
b,(t−1):t + b2∆w

(vol)
b,(t−1):t

where Q(τ) is (τ × 100)th percentile of Bitcoin’s daily log returns rb,t+1. ∆w
(cor)
b,(t−1):t and ∆w

(vol)
b,(t−1):t

refer to non-speculative demand changes due to correlation and volatility ratio changes from t− 1

to t, respectively. When τ = 0.5, we have least absolute deviations (LAD) regressions. Figure A.2

shows how coefficient estimates b1 and b2 with their 95% confidence intervals varies depending on

the choice of the quantile criteria τ in Panel (a) and (b), respectively.

In Figure A.2, the coefficient on ∆w
(cor)
b,(t−1):t, i.e., b1, varies around the previous OLS estimate

0.5 while keeping its statistical significance for the most part, except τ < 0.1. On the other hand,

the coefficients on ∆w
(vol)
b,(t−1):t, i.e., b2, are rather flat around zero and insignificant over all quantiles.

The quantile regression results confirm robustness of Bitcoin return predictability.
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Figure A.2: Quantile Predictive Regressions

This figure shows coefficients (solid lines with circle markers) and their 95% confidence intervals (dash-dotted
lines) from the quantile regressions satisfying the following:

Q(τ) = b0 + b1∆w
(cor)
b,(t−1):t + b2∆w

(vol)
b,(t−1):t

where Q(τ) is (τ × 100)th percentile of Bitcoin’s daily log returns rb,t+1. ∆w
(cor)
b,(t−1):t and ∆w

(vol)
b,(t−1):t refer to

non-speculative demand changes due to correlation and volatility ratio changes from t− 1 to t, respectively.

When τ = 0.5, we have least absolute deviations (LAD) regressions.

(a) b1 estimates (b) b2 estimates
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A.3.3 Trimming and Winsorizing

Bitcoin returns are highly volatile and fat-tailed. A few extreme observations can distort simple

OLS estimates. Here, we trim or winsorize the data to see how the extreme values affect our results

in the predictive regression rb,t+1 = b0 + b1∆w
(cor)
b,(t−1):t + εt+1. For trimming, we omit observations

whenever rb,t+1 is outside the interval (c, 100 − c) percentiles. For winsorizing, we replace both

dependent and independent variables outside their own intervals (c, 100 − c) percentiles by their

nearest boundary values. Then we fit the predictive regression and visualize the results for each

cutoff point c (ranging from 0 to 5 percentiles) in Figure A.3 and A.4, for the post-futures period

with and without the COVID-19 era samples. In Figure A.3, we observe that the coefficient b1 from

trimmed data is around 0.5 and statistically significant even if we omit total 10% of the sample at

tails. In Figure A.4, the coefficient b1 from the winsorized data even increases with the cutoff c.

Figure A.3: Predictive Regressions with Trimmed Data

The figure shows how different trimming schemes change OLS estimates on b1 (solid lines with circle mark-

ers) and associated 95% confidence intervals (dash-dotted lines) from Newey-West standard errors, for two

different sample periods.

(a) 12/18/2017− 12/31/2020 (b) 12/18/2017− 02/29/2020
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Figure A.4: Predictive Regressions with Winsorized Data

The figure shows how different winsorizing schemes change OLS estimates on b1 (solid lines with circle

markers) and associated 95% confidence intervals (dash-dotted lines) from Newey-West standard errors, for

two different sample periods.

(a) 12/18/2017− 12/31/2020 (b) 12/18/2017− 02/29/2020
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A.3.4 Relative Importance of Predictors

Changes in Bitcoin demand due to time-varying correlations certainly predict subsequent daily

Bitcoin returns. However, linear regression models might suffer from over-fitting and do not clearly

show how strong the predictability evidence is relative to other commonly used predictors.

To address these concerns, we apply several Machine Learning algorithms to fit the data:

LASSO, Group LASSO, Elastic Net, Random Forest (RF), Gradient Boosting Machine (GBM),

and Neural Network with one hidden layer (NN1). In particular, the last three algorithms consider

non-linearity and all possible interactions among predictors. Table A.3 shows a list of all predictors

simultaneously used in training. To avoid over-fitting, we perform a five-fold cross-validation to

tune hyper-parameters for each algorithm by a grid search.A.2

To quantify the importance of each predictor, we compute a reduction in R2, MSE (Mean-

Squared-Errors), or MAE (Mean-Absolute-Errors) when a given predictor is set to zero in a trained

model, following Gu, Kelly, and Xiu (2020). We report only the results based on R2 since all three

measures produce very similar outcomes in importance metrics. Two heat maps in Figure A.5

visualize this variable-importance metric for several machine learning algorithms. In Panel (a), the

variable importance metric is scaled by the column-wise sum so that the total sum for each column

can be unity. Darker colors represent greater importance in prediction. Panel (b) repeats the Panel

(a) but scales the importance metric by normalizing the variable importance metric to be between

zero and one for each algorithm.

Finally, Table A.4 reports the in-sample importance metric numbers for the most and the second

most important predictors for each algorithm using post-futures data. The most important variable

(MIV) is dominated by ∆w
(cor)
b,t and lagged trading volume; ∆w

(cor)
b,t is the top predictor in Group

LASSO (GLASSO), tree-based models (RF and GBM), and an artificial neural network (NN1)

while lagged trading volume is only dominant in certain linear models, LASSO and Elastic Net.

It is noticeable that ∆w
(cor)
b,t is always among the top two important predictors whereas all other

predictors fall short.

A.2We tune the shrinkage factors in LASSO, Group LASSO, and Elastic Net. For Random Forest, we tune the
feature sampling size and the minimum size of terminal nodes. For Gradient Boosting Machine, we tune the number
of trees, the shrinkage factor, the maximum depth of trees, the number of minimum observation in each node, and
the fraction of sub-sampling. For Neural Network, we tune the L1 shrinkage factor and the learning rate. For all
algorithms, we use a mean absolute error loss function for performance evaluation.
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From this Machine Learning exercise, we conclude that our proposed predictor is not only

orthogonal to other predictors but also a dominant predictor for daily Bitcoin returns, especially

when non-linearity and possible interactions are considered.
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Table A.3: A List of Predictors

The table shows a list of predictors used in Figure A.5 and Table 6 and A.4. When including both lagged

change and level of the same variable, we compute the lagged level of the variable as the average of its one-

day- and two-day-lagged values. Column ‘CG’ categorizes each variable into one of the followings: Group

M (market attributes), Group B (blockchain attributes), and Group L (extra lagged returns). Column ‘LG’

specifies groupings of predictors for Group LASSO with those sharing an integer index belonging to a same

group.

CG LG Predictor Name Definition

1 wt-cor t-1 change in optimal weight on Bitcoin from t-2 to t-1

due to time-varying correlation, (∆w
(cor)
b,(t−L):t)

3 BTC return t-1 log return of Bitcoin at time t-1
4 CAPM Beta t-1 CAPM Beta at time t-1
5 trade volume t-1 Bitcoin trade volume on major exchanges at time t-1
6 EPU t-1 Economic Policy Uncertainty Index at time t

M 1 S&P500 cor t-1.5 averge of BTC-S&P500 correlation at time t-1 and t-2
M 2 S&P500 vol t-1.5 averge of S&P500 volatility at time t-1 and t-2
M 7 S&P500 return t-1 log return of S&P500 index at time t-1
M 8 diff SKEW t-1 change of COBE SKEW index from t-2 to t-1
M 8 SKEW t-1.5 average of COBE SKEW index at time t-1 and t-2
M 9 diff VIX t-1 the difference between COBE VIX index at t-1 and that at t-2
M 9 VIX t-1.5 average of COBE VIX index at time t-1 and t-2
M 10 diff S&P500 volume t-1 change of CBOE Volume for S&P 500 Index options

(as % of market cap) from t-2 to t-1
M 10 S&P500 volume t-1.5 average of CBOE Volume for S&P 500 Index options

at time t-1 and t-2
M 2 BTC vol t-1.5 average of Bitcoin volatility at time t-1 and t-2
M 3 BTC logprc t-1.5 average of Bitcoin log price at time t-1 and t-2
M 11 3-mon treasury yield t-1 3-month treasury yield at time t-1
M 11 10-yr treasury yield t-1 10-year treasury yield at time t-1
M 11 30-yr treasury yield t-1 30-year treasury yield at time t-1
M 12 Gold return t-1 log return of Gold at time t-1
M 13 USD return t-1 log return of US Dollar at time t-1
B 14 WK BTC t-1 Wikipedia Bitcoin search counts at time t-1
B 14 GOOG BTC t-1 Google search counts for Bitcoin at time t-1
B 14 GOOG BTC wavg average Google search counts for Bitcoin over the past week
B 14 GOOG BTC NegAttn t-1 ratio of Google search counts for Bitcoin hack to Bitcoin at t-1
B 14 GOOG BTC NegAttn wavg average ratio of Google search counts for Bitcoin hack to

Bitcoin over the past week
B 15 transac volume t-1 Bitcoin transaction volumn at time t-1
B 16 difficulty t-1 Bitcoin mining diffficulty at time t-1
B 16 hashrate t-1 Bitcoin hashrate at time t-1
B 17 unique address t-1 number of Bitcoin unique address at time t-1
B 18 total BTC t-1 total number of Bitcoin at time t-1
B 15 unique BTC transac t-1 number of unique Bitcion transaction at time t-1
L 7 S&P500 return t-2 Daily log return of S&P500 index from t-2 to t-1
L 7 S&P500 return t-3 Daily log return of S&P500 index from t-3 to t-2
L 7 S&P500 return t-4 Daily log return of S&P500 index from t-4 to t-3
L 7 S&P500 return t-5 Daily log return of S&P500 index from t-5 to t-4
L 3 BTC return t-2 Daily log return of Bitcoin from t-2 to t-1
L 3 BTC return t-3 Daily log return of Bitcoin from t-3 to t-2
L 3 BTC return t-4 Daily log return of Bitcoin from t-4 to t-3
L 3 BTC return t-5 Daily log return of Bitcoin from t-5 to t-4
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Figure A.5: Variable Importance Heat Map

Two heat maps show variable importance metrics, which are reductions in R2 when a given predictor

is set to zero in a trained model, following Gu, Kelly, and Xiu (2020). The graphs show the relative

importance of each predictor in each of the following machine learning algorithms: LASSO, Group

LASSO, Elastic Net, Random Forest, Gradient Boosting Machine, and Neural Network with one hidden

layer. In Panel (a), the variable importance metric (Metric I) is scaled by the column-wise sum so that

the total sum for each column can be unity. Darker colors represent greater importance in prediction.

Panel (b) repeats Panel (a) but scales the importance metric (Metric II) by normalizing the variable

importance metric to be between zero and one for each algorithm. For Group LASSO, we use the group-

ings specified in Table A.3 column ‘LG’ such that predictors with similar characteristics are grouped together.

(a) Metric I (b) Metric II
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Table A.4: Importance of Predictor Variables

The table shows variable importance metrics (Metric I in Figure A.5), which are reductions inR2 when a given

predictor is set to zero in a trained model (Gu, Kelly, and Xiu 2020), for ∆w
(cor)
b,(t−1):t and the second important

predictor under different Machine Learning algorithms: LASSO, Group LASSO (GLASSO), Elastic Net

(ENET), Random Forest (RF), Gradient Boosting Machine (GBM), and Neural Network with one hidden

layer (NN1). The variable importance metric is scaled by the sum of all predictors so that the total sum for

each algorithm can be unity. ‘MIV’ represents the most important variable whereas ‘SIV’ means the second

most important variable. ‘VI score’ is a variable importance score implied by the variable importance metric.

LASSO GLASSO ENET RF GBM NN1

MIV lagged ∆w
(cor)
b,(t−1):t lagged ∆w

(cor)
b,(t−1):t ∆w

(cor)
b,(t−1):t ∆w

(cor)
b,(t−1):t

trading trading

volume volume

VI score of MIV 0.67 0.35 0.27 0.08 0.50 0.38

SIV ∆w
(cor)
b,(t−1):t lagged ∆w

(cor)
b,(t−1):t lagged lagged lagged

EPU trading market Bitcoin

volume skewness returns

VI score of SIV 0.33 0.26 0.24 0.06 0.25 0.24
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